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Abstract
A theory of neutron scattering by magnetic ions is developed and applied to
diffraction by crystals in which ions in the unit cell are not equivalent on account
of a lack of translational symmetry in their environments. The development
demonstrates a close connection between interpretations of magnetic neutron
and x-ray Bragg diffraction, in terms of an atomic model. Cross-sections
for neutron diffraction by powders and single crystals, including polarization-
induced interference between nuclear and magnetic amplitudes, are considered.
By way of illustrating the theoretical development, cross-sections are predicted
for Mott–Hubbard insulator, V2O3, on the basis of findings from extensive
studies using resonant x-ray diffraction.

1. Introduction

The determination of magnetization distributions by the Bragg diffraction of neutrons is not
a new experimental technique but one that has developed over the past four decades [1]. It is
a technique of paramount value in understanding modern magnetic materials whose complex
properties can involve an interplay of charge, orbital and spin degrees of freedom of the valence
electrons [2, 3]. A theoretical framework for the interpretation of neutron diffraction data has
also been in place for some time, starting essentially with Trammell’s work [4]. Resonant and
non-resonant Bragg diffraction of x-rays has come to the fore as a complementary technique
in the past decade [5] with the growing availability of intense, polarized and tunable beams of
x-rays from synchrotron sources. The instrumentation now available at synchrotron sources
provides accurate and detailed information on charge and magnetization distributions. As an
example of recent applications of resonant x-ray diffraction revealing new features of complex
magnetic materials, we will consider the Mott–Hubbard insulator V2O3 [6].

We calculate the intensity of neutrons diffracted from crystals that support long-range
magnetic order. Ions in a unit cell are not equivalent due to a lack of translational symmetry
in their environments. The present work is based on atomic models which have proved to be
good starting points for the interpretation of a wealth of data on 3d transition and lanthanide
compounds. A theory of neutron diffraction, with full account of scattering by spin and orbital
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magnetic moments, is developed from previous work [7, 8] and applied to powder and single-
crystal samples. One aim in the development is to expose common structure in frameworks
for the interpretation of neutron diffraction and x-ray diffraction data. In the case of V2O3,
neutron diffraction, at reflections revealed so far only in resonant x-ray diffraction, can make
a pivotal contribution to understanding its complex magnetic properties.

Vanadium sesquioxide exhibits a first-order, ferroelastic structural phase transition, at a
temperature in the range 150–160 K, at which the material changes from a metal to an insulator
and from a paramagnet to a collinear antiferromagnet. The long-range magnetic order coexists
with a monoclinic crystal structure with space group I2/a (number 15) in which vanadium
ions occupy sites 8(f) that possess no symmetry. The energy dependences of resonant x-ray
scattering from V2O3 [6] at space-group-forbidden reflections (Miller indices hkl satisfy h+k+l
an odd integer) are strikingly different at reflections with even and odd values of h, and this
feature has been shown to be due to a selection rule [9] that stems from the configuration of
the V moments. The same theory [9] accounts for data collected in azimuthal-angle scans at
space-group-forbidden reflections.

Expressions for the amplitude and intensity of magnetic neutron diffraction are recorded
in the next section, where they are developed for the standard atomic model of a magnetic
material. We include a new expression for the intensity which highlights contributions made
to scattering by anisotropic components of the magnetization. Properties of the amplitude
set in principal axes are given in section 3. Neutron diffraction by V2O3 is the subject of
section 4, where we give an expression for the intensity expected from a single crystal. Use
of the expression for the interpretation of experimental data should yield valuable information
that can be compared directly with findings from ab initio calculations and results derived from
complementary experiments. To illustrate the information content of the neutron intensity we
evaluate our expression for a model V wavefunction, and our findings suggest that intensities
at some matching reflections have the potential to yield good quality information about the
orbital magnetization. We also estimate the intensity of reflections first seen in resonant x-ray
diffraction [6]. A brief discussion of our main results appears in section 5, and material on the
atomic spherical tensors at the heart of our theoretical framework is gathered in an appendix.

2. Basics

The interaction between a neutron with spin sn and electrons with position, spin and momentum
variables R j , s j and p j , respectively, is sn · Q⊥ where

Q⊥ =
∑

j

exp(ik · R j)

{
k̂ × (s j × k̂) − i

h̄k2
(k × p j)

}
. (2.1)

Here, k is the change on scattering in the wavevector of the neutron and k̂ = k/k. In an
atomic model of a magnetic material the sum on j over electrons is partitioned into a sum
over electrons in the valence shell of an ion and a sum over all ions. The magnetic amplitude
observed in Bragg diffraction is the mean value of Q⊥, denoted here by 〈Q⊥〉, evaluated for
magnetic ions in the unit cell. It has been shown that the magnetic amplitude can be written as

〈Q⊥,p〉 = (4π)1/2
∑
K K ′

∑
qq ′

Y K
q (k̂)�K ′

q ′ (K )(K q K ′q ′|1 p). (2.2)

In this expression the Clebsch–Gordan coefficient couples two spherical tensors, of rank K
and K ′, to form a tensor of rank one (a vector) and projection p = 0,±1. The coefficient is
zero unless K is equal to |K ′ − 1|, K ′ or K ′ + 1, and p = q + q ′. Evidently, the geometric
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content of the magnetic amplitude is contained in spherical harmonics Y K
q (k̂). The quantity

�K ′
q ′ (K ) is the unit-cell structure factor:

�K ′
q ′ (K ) =

∑
d

exp(ik · d)〈T K ′
q ′ (K )〉d, (2.3)

where 〈T K ′
q ′ (K )〉d describes the valence shell of the ion at position d in the cell. With a small

value of k the atomic tensor 〈T 1〉 is proportional to the magnetic moment µ = 〈L + 2S〉.
Additional properties of atomic spherical tensors for neutron diffraction are gathered in an
appendix.

The interpretation of resonant x-ray diffraction, based on an atomic model, contains a
quantity very similar to (2.2) [10]. The amplitude in this instance is a scalar, i.e. a tensor of
rank zero. Introducing the identity (K q K ′q ′|00) ∝ δK ,K ′δq,−q ′ in (2.2), the quantity which in
x-ray diffraction corresponds to (2.2) is actually a scalar product of a geometric factor with
the structure factor, where the geometric factor contains information on the condition of the
primary and diffracted x-ray beams.

Thomson scattering of x-rays can also be expressed in terms of our unit-cell structure factor.
In this case, the atomic tensor in (2.3) describes charge scattering. Appropriate expressions
are (A.10) and (A.11).

Returning to neutron diffraction, we recount the limiting value taken by the magnetic
amplitude as k tends to the forward direction. With k → 0 one finds 〈T 1〉 → µ/3 and, for
one ion,

〈Q⊥〉 → 1
2 {µ − k̂(k̂ · µ)}. (2.4)

Retaining the first correction to these limiting values leads to the so-called dipole approximation
for 〈T 1〉 in which

〈T 1〉 ∼ 1
3 {2〈S〉〈 j0(k)〉 + 〈L〉(〈 j0(k)〉 + 〈 j2(k)〉)}. (2.5)

In this expression, 〈 jn(k)〉 is the Bessel function transform of order n of the radial component
of the magnetization distribution. The components have the properties 〈 j0(0)〉 = 1 and
for n > 0〈 jn(0)〉 = 0. For the interpretation of data gathered with a view to examining
spatial anisotropy in the magnetization distribution, higher-order K ′ > 1 atomic tensors are
considered. The upper limit is set by the angular momentum of the valence shell; for a 3d
transition ion the maximum value of K ′ in (2.2) is 5, and for a lanthanide ion the corresponding
value is 7.

The intensity observed in a powder pattern is interpreted in terms of

Ipowder = 1

4π

∫
dk̂ |〈Q⊥〉|2 =

∑
K K ′

∑
q ′

(
3

2K ′ + 1

)
|�K ′

q ′ (K )|2. (2.6)

This expression can be simplified by using a general property of the atomic tensor. If K ′ is an
odd integer, then K = K ′ ± 1, and

〈T K ′
q ′ (K ′ + 1)〉 =

(
K ′

K ′ + 1

)1/2

〈T K ′
q ′ (K ′ − 1)〉. (2.7)

If K ′ is even, the only non-zero tensor occurs when K = K ′.
Physical properties of the sample can impose restrictions on K ′ and usually one finds that

K ′ is restricted to odd integers. There are two sources of restrictions. First, a property of
states used to describe the valence shell can impose restrictions on K ′. For example, if a 4f
shell is adequately described by states with the same values of J , S and L, then K ′ is odd, for
atomic tensors with even K ′ are zero. Secondly, the configuration of magnetic moments can
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lead to a selection rule on K ′ in the structure factor. Such a case is V2O3, which is a collinear
antiferromagnet, and �K ′

vanishes unless K ′ is odd.
Experiments on single crystals are interpreted in terms of |〈Q⊥〉|2. When K ′ is odd the

single-crystal intensity can be written in a simple and appealing form, which has the geometric
content expressed in terms of spherical harmonics Y l

m(k̂) instead of products of spherical
harmonics. We find, from (2.2),

Icrystal = |〈Q⊥〉|2 = (4π)1/2
∑
K ′ I ′

∑
q ′r ′

∑
lm

Y l
m(k̂)G(K ′, I ′; l)

× (−1)r ′
�K ′

q ′ (K ′ − 1){� I ′
r ′ (I ′ − 1)}∗

(
K ′ I ′ l
q ′ r ′ m

)
. (2.8)

Values of G(K ′, I ′; l) are listed in table 1, and satisfy the sum rule∑
l

(2l + 1)1/2

(
K ′ I ′ l
0 0 0

)
G(K ′, I ′; l) = 0. (2.9)

3 j -symbols in (2.8) and (2.9) are more convenient to use than Clebsch–Gordan coefficients;(
K I l
q r m

)
= (−1)K−I−m(2l + 1)−1/2(K q Ir |l − m). (2.10)

The quantity summed in (2.9) is also included in table 1. To demonstrate that the expression
for the single-crystal intensity is purely real, one uses G(K ′, I ′; l) = G(I ′, K ′; l) and
(Y l

m)∗ = (−1)mY l−m together with an identity for interchanging two columns of a 3 j symbol.
The term in (2.8) with l = m = 0 is identical to the powder intensity derived from (2.6),
because integration over the direction of k sets equal to zero every term in (2.8) except the
term with l = m = 0. Terms in (2.8) with l > 0 represent the influence on scattering of
anisotropy in the magnetization distribution.

A useful approximation to the intensity is obtained from the term in (2.8) with K ′ = I ′ = 1.
The corresponding value of the structure factor �1

q ′(0) is a spherical component of a vector
Ψ1 with real Cartesian components. Setting K ′ = I ′ = 1 in (2.8), it reduces to

Icrystal = 9
4 {Ψ1 · Ψ1 − (k̂ · Ψ1)2}. (2.11)

The dipole approximation for the intensity is obtained from (2.11) on using in �1
q ′(0) the

appropriate approximation for the atomic tensor.
To interpret the interference between magnetic and nuclear amplitudes induced by

polarization P in the primary beam, one needs to evaluate

P · 〈Q⊥〉 =
∑

q=0,±1

(−1)q P−q〈Q⊥,q〉. (2.12)

The identity expresses the scalar product of P and 〈Q⊥〉 in terms of their spherical components.
The Cartesian components of P , say, are

Px = (P−1 − P+1)/
√

2, Py = i(P−1 + P+1)/
√

2, Pz = P0. (2.13)

3. Principal axes

In many cases the physical properties of an ion in a crystal are most conveniently addressed
in a set of axes that are not the crystal axes, nor the axes used to define the geometry of the
experiment. Let us label the second set of axes by Cartesian coordinates (ξηζ ). We use Euler
angles α, β and γ to define the second set of axes, used for calculations of atomic quantities,
relative to the chosen crystal axes and find

〈T K
q 〉 =

∑
r

〈T K
r 〉(ξηζ ) DK

rq(−γ,−β,−α), (3.1)

where DK
rq is an element of the rotation matrix.
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Table 1. Values of G(K ′, I ′; l) that appear in equation (2.8). The right-hand column is the
combination of G and a 3 j-symbol (3 j) that arises in (2.9) and subsequent applications. Table 1(a)
contains those entries relevant for 3d transition elements and table 1(b) gives the additional values
required for lanthanide elements.

(a) (b)
K ′ I ′ l G(K ′, I ′; l) (2l + 1)1/2(3 j)G K ′ I ′ l G(K ′, I ′; l) (2l + 1)1/2(3 j)G

1 1 0 − 3
2

√
3 3

2 1 7 6 − 3
2

√
3 3

2

√
7
5

1 1 2 − 3
2

√
3
2 − 3

2 1 7 8 − 3
4

√
21
2 − 3

2

√
7
5

1 3 2 − 3
2

√
3 9

2

√
1
7 3 7 4 − 45

4

√
7

143
315
572

√
5

1 3 4 − 9
4 − 9

2

√
1
7 3 7 6 39

8

√
21

374
819
748

√
1
5

1 5 4 − 3
2

√
3 3

2

√
15
11 3 7 8 9

8

√
7

247 − 189
988

√
1
5

1 5 6 − 3
2

√
5
2 − 3

2

√
15
11 3 7 10 − 315

8

√
3

646 − 945
1292

√
5

3 3 0 − 3
4

√
7 3

4 5 7 2 − 15
2

√
1

13
15
26

√
21
11

3 3 2 3
8

√
21 3

4 5 7 4 33
4

√
15

442
15

442

√
231

3 3 4 − 3
4

√
7
22

9
44 5 7 6 − 33

4

√
5

323
15
646

√
231

3 3 6 − 15
8

√
21
11 − 75

44 5 7 8 3
4

√
105
494

45
494

√
21
11

3 5 2 − 3
2

√
5
2

5
2

√
15
77 5 7 10 99

2

√
35

193 154 − 3465
193 154

√
231

3 5 4 11
4

√
3
13

3
26

√
165

7 5 7 12 − 495
4

√
7

14 858 − 1485
14 858

√
231

3 5 6 0 0 7 7 0 − 3
8

√
15 3

8

3 5 8 − 7
2

√
15
26 − 7

13

√
105
11 7 7 2 795

16

√
3

3094
795
1768

5 5 0 − 1
2

√
11 1

2 7 7 4 − 5589
16

√
5

323 323
150 903
369 512

5 5 2 3
2

√
33
26

15
26 7 7 6 375

16

√
15

7106
9375

28 424

5 5 4 −
√

22
13

6
13 7 7 8 − 375

8

√
15

79 534
9375

45 448

5 5 6
√

33
85

4
17 7 7 10 243

16

√
1

193 154
45 927

3863 080

5 5 8 7
√

11
2470 − 49

247 7 7 12 1815
16

√
3

52 003 − 19 965
59 432

5 5 10 − 105
2

√
11

4199 − 6615
4199 7 7 14 − 3003

16

√
3

14 858 − 429 429
297 160

We will label (ξηζ ) principal axes when atomic tensors 〈T K
r 〉(ξηζ ) for the model in question

are zero unless r = 0. Alternatively, in principal axes, atomic tensors are said to be diagonal
and the ζ -axis is called the axis of quantization.

It can be shown that the magnetic amplitude is zero ifk is parallel to the axis of quantization,
i.e. for k and ζ parallel, 〈Q⊥〉 = 0. This finding is a generalization of the standard result which
says that the intensity is zero when k and the moment direction are parallel.

A second result of this nature is found for the value of P · 〈Q⊥〉 when P and ζ are parallel.
We find

ζ̂ · 〈Q⊥〉 =
∑

K ′

(
3K ′

2K ′ + 1

)1/2

{�K ′
0 (K ′ − 1)}(ξηζ )[PK ′−1(kζ ) − PK ′+1(kζ )], (3.2)

where K ′ is odd, and kζ = k̂ · ζ̂ is the projection of the scattering wavevector on the axis
of quantization. In arriving at (3.2), the term with K = K ′ is found to vanish, and the two
terms K = K ′ ± 1 combine with the aid of (2.7) to give the very simple expression that we
report. The Legendre polynomial Pn(x) satisfies P0(x) = 1 and Pn(1) = 1. From the second
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Figure 1. Positions of the eight V ions in the monoclinic cell adopted by V2O3 below the Néel
temperature, together with the configuration of their moments in the plane spanned by am and
cm . The monoclinic Bragg wavevector τm = (202̄)m is parallel to the trigonal axis ch , and bm is
normal to the plane of the diagram and parallel to ah [9].

property we see that scattering is zero if k and ζ coincide, a result that we anticipated. For
K ′ = 1 and 3,

1 − P2(x) = 3
2 (1 − x2) and P2(x) − P4(x) = 7

8 (1 − x2)(5x2 − 1). (3.3)

4. Vanadium sesquioxide

The space group of the low-temperature monoclinic structure is number 15 (I2/a). This is a
body-centred cell and Bragg wavevectors τ m(hkl) for charge reflections have the necessary
condition h +k +l an even integer (Miller indices h, k and l are integers). The antiferromagnetic
configuration of vanadium magnetic moments, displayed in figure 1, consists of sheets of
moments with ferromagnetic alignment within (010)m layers, or hexagonal (110) layers, and
moment reversal between adjacent layers [12]. The moments are orientated along some easy
axis in these layers, and we take φ as the canting angle with respect to the trigonal axis.

The trigonal basis vectors are ah = a(1, 0, 0), bh = a(−1/2, (1/2)
√

3, 0) and ch =
c(0, 0, 1) and the volume of the unit cell = a2c

√
3/2. Following Dernier and Marezio [11]

in the use of an I -centred cell, from these vectors we generate monoclinic basis vectors
am = (0, 1√

3
2a, (1/3)c), bm = ah and cm = (0, 1√

3
a,−(1/3)c), and the volume of the

cell = a2c/
√

3. The corresponding Bragg wavevector τ m(hkl) ≡ (hkl)m is

τ m(hkl) = 1

a

(
k,

1√
3
(h + l),

a

c
(h − 2l)

)
. (4.1)

We note that (l0l̄)m is parallel to ch and (2lkl)m is normal to ch .
Referring to figure 1, the position coordinates of vanadium ions labelled (1) and (5) are

(x, y, z) and (−x,−y,−z), respectively, with x = 0.3439, y = 0.0012 and z = 0.2993 [11].
The positions of the pair (2) and (6) are related by a body-centre translation to the pair (1) and (5).
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The position coordinates of (3) and (7) are (1/2 − x, y,−z) and (1/2 + x,−y, z), respectively,
and the pairs (4), (8) and (3), (7) are related by the body-centre translation. The body-centre
translation (1/2, 1/2, 1/2)m = a

2 (1,
√

3, 0) and (1/2, 1/2, 1/2)m · τ m(hkl) = 1
2 (h + k + l). It

is convenient to define an angle ν = 2π(x, y, z)m · τ m(hkl) = 2π(xh + zl) where the second
equality is correct for y = 0.

For the model of V2O3 that we have described, in the previous paragraphs, �K ′
can be

different from zero for even values of K ′ + (h +k + l), so there is a selection rule in the structure
factor that links the rank of atomic tensors and the sum of Miller indices [9]. Neutron magnetic
diffraction is observed at reflections with h + k + l an odd integer, i.e. space-group-forbidden
reflections, and the scattering amplitude is composed of tensors of rank K ′ = 1, 3 and 5. One
finds

�K ′
q ′ (K ) = 4 cos(ν){〈T K ′

q ′ (K )〉 + (−1)h〈T K ′
−q ′(K )〉}. (4.2)

Moon [12] studied reflections with even h and established the configuration of moments
illustrated in figure 1, in which V moments are contained in the plane normal to bm and
cant at angle φ ∼ 70◦ with respect to ch . Intensity observed with odd h using resonant x-ray
diffraction [6] has been successfully interpreted using (4.2) [9]. Note that for odd h we have
�K ′

q ′ = −�K ′
−q ′ and there is no contribution to scattering from diagonal elements of the atomic

tensor. Scattering observed at space-group-forbidden reflections with odd h is the magnetic
analogue of Templeton and Templeton x-ray scattering [13] by anisotropic charge distributions.

4.1. Magnetic reflections with even h

The atomic tensor in (4.2) is obtained from principal axes (ξηζ ) using (3.1). It is assumed that
the axis of quantization is contained in the plane am–cm and it encloses an angle φ with the
trigonal axis. One finds

〈T K ′
q ′ (K )〉 = 〈T K ′

0 (K )〉(ξηζ ) DK ′
q ′0

(
−π

2
, φ, 0

)
, (4.3)

and the corresponding value of the structure factor is

�K ′
q ′ (K ) = 8 cos(ν)〈T K ′

0 (K )〉(ξηζ ) DK ′
q ′0

(
−π

2
, φ, 0

)
. (4.4)

The last result follows because, according to (4.3), 〈T K ′
q ′ 〉 = 〈T K ′

−q ′ 〉. (In consequence, for odd
h the result (4.3) predicts null scattering.)

Using (4.4) in (2.8) we arrive at

Icrystal = {8 cos(ν)}2
∑
K ′ I ′

∑
l

(2l + 1)1/2G(K ′, I ′; l)Pl(τζ )〈T K ′
0 (K ′ − 1)〉(ξηζ )

× 〈T I ′
0 (I ′ − 1)〉(ξηζ )

(
K ′ I ′ l
0 0 0

)
. (4.5)

On writing τ̂ m(hkl) = (t1, t2, t3) one has τζ = t2 sin φ + t3 cos φ. If τ̂ m and ζ are parallel,
τζ = 1 and the intensity is zero by virtue of the sum rule (2.9) which is satisfied by G(K ′, I ′; l).
On retaining in (4.5) the term K ′ = I ′ = 1, and neglecting all other terms in the sums on K ′
and I ′, the remaining l = 0 and 2 terms collapse to give

Icrystal = 9
4 {8 cos(ν)}2(1 − τ 2

ζ )〈T 1
0 (0)〉2

(ξηζ ). (4.6)

In arriving at this expression we use entries in table 1 and for the Legendre polynomials the first
entry in (3.3). The result (4.6) is consistent with the more general expression found in (2.11).

The intensity (4.5) contains the canting angle φ and three atomic tensors. These four
unknown quantities can be inferred by fitting experimental data for intensities to (4.5). Values
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Table 2. Matrix elements 〈T K ′
0 (K ′ − 1)〉 = 〈SMS L ML |T K ′

0 (K ′ − 1)|SMS L ML 〉 with S = 1,
MS = 1, L = 3 and ML = −3 and 1 that enter the evaluation of the intensity when the V-ion
wavefunction in V2O3 is modelled by (4.7).

ML = −3 ML = 1

〈T 1
0 (0)〉 = − 1

3 〈 j0(k)〉 − 22
21 〈 j2(k)〉 〈T 1

0 (0)〉 = 〈 j0(k)〉 + 38
105 〈 j2(k)〉

〈T 3
0 (2)〉 = 4

7
√

7
{〈 j2(k)〉 + 〈 j4(k)〉} 〈T 3

0 (2)〉 = 4
7
√

7
{ 1

5 〈 j2(k)〉 + 2
3 〈 j4(k)〉}

〈T 5
0 (4)〉 = − 1

7 ( 15
11 )1/2〈 j4(k)〉 〈T 5

0 (4)〉 = − 1
7 ( 5

33 )1/2〈 j4(k)〉

of the atomic tensors derived from a model of the V ion’s wavefunction can then be tested
against measured values.

We have calculated (4.5) using for 〈T K ′
0 (K ′ − 1)〉(ξηζ ) expressions derived from a model

V wavefunction based on 3d2 and the configuration 3F, namely,

|G〉 = |S = 1, Ms = 1〉{ε|L = 3, ML = −3〉 + (1 − ε2)1/2|L = 3, ML = 1〉}. (4.7)

The value ε = 0.671 gives 〈Lζ 〉 = −0.8 and a V magnetic moment µ = 1.2 µB in
agreement with the finding of Moon [12]. In the expression for 〈T K ′

0 (K ′ − 1)〉(ξηζ ) there
are no contributions from cross-terms and one finds

〈T K ′
0 (K ′ − 1)〉(ξηζ ) = ε2〈SMs = 1, L ML = −3|T K ′

0 (K ′ − 1)|SMs = 1, L ML = −3〉
+ (1 − ε2)〈SMs = 1, L ML = 1|T K ′

0 (K ′ − 1)|SMs = 1, L ML = 1〉. (4.8)

Expressions for the two matrix elements, obtained by use of (A.8), are listed in table 2. In our
numerical estimates we use 〈 jn(k)〉 for V3+ from [14].

Regarding 〈T 1
0 (0)〉(ξηζ ) that appears in the approximation (4.6) to Icrystal, our model

wavefunction gives

〈T 1
0 (0)〉(ξηζ ) = 1

3 〈 j0(k)〉(3 − 4ε2) + 2
105 〈 j2(k)〉(19 − 74ε2). (4.9)

As anticipated in (2.5), the coefficient of 〈 j0〉/3 is the magnetic moment µ of the V ion.
A confrontation of experimental data for magnetic Bragg intensities with Icrystal listed in

the second (ε2 = 0.45, 〈Lζ 〉 = −0.8) and third (ε2 = 0.25, 〈Lζ 〉 = 0) columns of table 3 will
help find the exact nature of the magnetization and settle the contribution to it made by the
orbital moment. The value of the canting angle φ = 70◦ is consistent with the interpretation
of neutron and resonant x-ray diffraction data [9, 12].

Matching reflections, identified by a common value of |τ m|, are particularly valuable
because uncertainty in the interpretation arising from uncertainty in 〈 jn(k)〉 is eliminated. To a
good approximation, (210)m&(21̄0)m and (201)m are a group of matching reflections and the
difference between Icrystal at the partners (210)m&(21̄0)m and (201)m is striking and is largely
due to pronounced anisotropy in the magnetization. Two other groups of matching reflections
that are very sensitive to anisotropy are (003)m&(401̄)m and (023)m&(023̄)m , (421̄)m&(42̄1̄)m .
These two groups of reflections are sensitive to the orbital magnetization, which is seen in the
variation of the ratio in column five between Icrystal for 〈Lζ 〉 = −0.8 and that for 〈Lζ 〉 = 0. In
this respect, we note that the last three reflections in table 3 have intensity due to the orbital
magnetization and so they appear to be particularly good sources of information.

4.2. Magnetic reflections with odd h

We have estimated the neutron scattering intensity at magnetic reflections with h odd by
using atomic tensors inferred from a successful interpretation of resonant x-ray diffraction
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Table 3. The second column contains Icrystal derived from (4.5) and atomic tensors (4.8) evaluated
for ε2 = 0.45 which gives a V-ion moment µ = 1.2 µB . Values are listed with increasing
magnitudes of selected Bragg wavevectors τ m = (hkl)m , and the last three columns specify the
unit vector τ̂m = (t1, t2, t3). The third column contains Icrystal derived from (4.5) and (4.8) and
ε2 = 0.25 which corresponds to a V-ion moment with no orbital content 〈Lζ 〉 = 0 and µ = 2.0 µB .
The ratio of Icrystal for µ = 1.2 and 2.0 µB , normalized to unity at the strongest reflection (010)m ,
is found in the fifth column. The canting angle φ = 70◦ .

h k l 〈L〉 = −0.8 〈L〉 = 0.0 |τ | (Å−1) Ratio t1 t2 t3

0 1 0 16.61 50.12 0.20 1.00 1.000 0.000 0.000
0 0 1 1.47 4.33 0.18 1.02 0.000 0.643 −0.766
2 0 −1 3.94 12.36 0.30 0.96 0.000 0.387 0.922
2 1 0 0.62 1.95 0.34 0.96 0.597 0.689 0.410
2 0 1 1.34 4.08 0.35 0.99 0.000 1.000 0.000
0 1 2 3.59 14.46 0.41 0.75 0.487 0.562 −0.669
0 2 1 0.42 1.88 0.44 0.68 0.912 0.263 −0.314
2 1 −2 2.76 12.41 0.46 0.67 0.436 0.000 0.900
2 2 −1 1.63 7.77 0.50 0.63 0.802 0.231 0.551
2 2 1 2.09 9.17 0.53 0.69 0.756 0.655 0.000
0 0 3 1.26 7.12 0.54 0.53 0.000 0.643 −0.766
4 0 −1 0.87 3.15 0.54 0.83 0.000 0.643 0.766
4 1 0 0.30 1.07 0.57 0.84 0.349 0.805 0.479
0 3 0 0.84 7.99 0.60 0.32 1.000 0.000 0.000
2 0 3 0.67 3.32 0.64 0.61 0.000 0.903 −0.430
0 2 3 0.23 3.14 0.67 0.22 0.596 0.516 −0.615
4 2 −1 0.57 3.03 0.67 0.56 0.596 0.516 0.615
4 0 −3 0.43 3.94 0.70 0.33 0.000 0.166 0.986
4 1 2 0.28 1.21 0.72 0.71 0.277 0.961 0.000
2 2 3 0.22 1.98 0.75 0.34 0.530 0.765 −0.365
2 3 −4 0.21 0.35 0.94 1.81 0.637 −0.245 0.730
0 5 0 0.32 0.15 1.00 6.45 1.000 0.000 0.000
0 5 2 0.24 0.03 1.06 21.44 0.941 0.217 −0.259
2 5 −2 0.27 0.02 1.08 33.00 0.924 0.000 0.381
0 4 5 0.30 0.00 1.20 612.25 0.665 0.480 −0.572
2 5 −4 0.52 0.01 1.24 107.54 0.810 −0.187 0.556
4 4 −5 0.22 0.00 1.26 153.71 0.637 −0.092 0.766

on magnetically ordered V2O3. The intensity of scattering from a single crystal is derived
from (2.8). For the reflections of interest here, the nuclear structure factor is zero, and thus
polarization in the primary beam of neutrons does not lead to mixed magnetic and nuclear
reflections. Because the V magnetic moment is contained in the plane spanned by am and
cm , �1

±1 = 0. Our estimate of Icrystal is made with tensors of rank K ′ = 3 and the terms
proportional to 〈 j2(k)〉. Terms we neglect are proportional to 〈 j4(k)〉, cf table 2, which for
k ∼ 0.6 Å−1 is very small compared to 〈 j2(k)〉 that we retain.

By way of orientation, first we consider the intensity (2.6) observed in a powder pattern.
Setting K ′ = 3 and using (2.7),

Ipowder = 3
4

∑
q ′

|�3
q ′(2)|2.

In the sum, q ′ takes all values consistent with the rank K ′ = 3 of the tensor, but for odd h,
�K ′

0 = 0. Since the V ion occupies a site with no symmetry, site symmetry plays no part in
selecting values of the projection label q ′ on atomic tensors.
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Table 4. Values of atomic tensors of rank three for V ions in magnetically ordered V2O3 inferred
from an interpretation of resonant x-ray Bragg diffraction [15].

〈T 3
+1(2)〉′ = (0.037 ± 0.009)〈 j2(k)〉

〈T 3
+2(2)〉′′ = (−0.017 ± 0.014)〈 j2(k)〉

〈T 3
+3(2)〉′ = (0.039 ± 0.013)〈 j2(k)〉

Table 5. Estimates for V2O3 of the single-crystal intensity (2.8) and projections of the magnetic
amplitude on ch and bm .

Reflection Icrystal ch · 〈Q⊥〉 b̂m · 〈Q⊥〉
(102)m 0.007 0 0.084
(120)m 0.002 0.027 0.004
(122)m 0.011 0.063 −0.036
(320)m 0.022 −0.118 −0.016
(140)m 0.001 0.021 0.002
(340)m 0.017 −0.091 −0.016

In (4.2) we set h odd and use 〈T K ′
−q ′ 〉 = (−1)q ′ 〈T K ′

q ′ 〉∗ and find

�3
+1(2) = 8 cos(ν)〈T 3

+1(2)〉′,
�3

+2(2) = i 8 cos(ν)〈T 3
+2(2)〉′′,

�3
+3(2) = 8 cos(ν)〈T 3

+3(2)〉′.
Values of the atomic tensors inferred from an interpretation of resonant x-ray diffraction data
on V2O3 [6, 15] are listed in table 4. Our knowledge of 〈T 3

+2〉′′ is not as good as that for 〈T 3
+1〉′

and 〈T 3
+3〉′. From entries in table 4 we find

Ipowder = 96 cos2(ν){〈T 3
+1(2)〉′2 + 〈T 3

+2(2)〉′′2 + 〈T 3
+3(2)〉′2} ∼ 0.31{〈 j2(k)〉 cos(ν)}2.

Let us consider the reflection (340)m for which τ (340)m = 0.90 Å−1 and cos(ν) = 0.98.
Using [14] 〈 j2(τ )〉 = 0.20, we obtain for (340)m the estimate Ipowder ∼ 0.011. Table 5
contains estimates of intensities for single crystals derived from (2.8). Reflections (122)m and
(320)m possess the same value of τm , as is evident by inspection of (4.1).

Spatial anisotropy in the intensities is highlighted in projections of 〈Q⊥〉. Accordingly,
table 5 contains some values of m · 〈Q⊥〉 for m parallel to the trigonal axis ch and m normal
to the plane am–cm that contains the V magnetic moments. The amplitude ĉh · 〈Q⊥〉 is
proportional to t1 and vanishes for reflections (h0l). In detail,

ĉh · 〈Q⊥〉 = √
21t1 cos(ν){〈T 3

+1〉′t3(15t2
3 − 11) + 2

√
10〈T 3

+2〉′′t2(1 − 3t2
3 )

+
√

15〈T 3
+3〉′t3(t2

1 − 3t2
2 )}. (4.10)

Expressions for other projections are even more complicated and we refrain from giving them.

5. Discussion

In the context of an atomic model of a material, we have developed and applied a theoretical
framework for magnetic neutron diffraction. The framework has the same formal structure
as one used recently for the successful interpretation of resonant x-ray Bragg diffraction by
magnetic crystals. A formal structure in the interpretation of diffraction data that is common
to neutron and x-ray techniques facilities the comparison of results. By way of illustrating this
advantage, we predict results for magnetic neutron diffraction by V2O3 on the basis of results
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from resonant x-ray diffraction by the material that reveal reflections not yet observed with the
neutron technique.

A new expression that we give for the intensity of neutrons magnetically diffracted by
a single crystal is well suited to the identification of features due to spatial anisotropy in the
distribution of magnetization. In this expression, the leading term is the intensity expected
from a powder sample. Other general results include properties of the amplitude for magnetic
diffraction when set in principal axes, where atomic spherical tensors describing the valence
shell are diagonal. The atomic tensors have been expressed in terms of unit tensors that are
widely used in atomic physics. The literature on the interpretation of x-ray dichroic signals
and resonant diffraction already contains extensive tabulations of the unit tensors evaluated
for 3d transition and lanthanide ions, and the results complement tabulations of closely related
quantities that have been used in the interpretation of magnetic neutron diffraction signals.
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Appendix

The purpose of the appendix is to record key expressions for the atomic tensor and to relate
work to previous findings. The reduced matrix element in the Wigner–Eckart theorem,

〈J M|T K ′
q ′ (K )|J ′M ′〉 = (−1)J−M

(
J K ′ J ′

−M q ′ M ′

)
(SL J‖T K ′

(K )‖S′ L ′ J ′), (A.1)

is simply related to quantities A(K , K ′) and B(K , K ′) used previously [7, 8] in the spin and
orbital matrix elements of T K ′

, namely,

(SL J‖T K ′
(K )‖S′ L ′ J ′) = (−1)K ′+J ′−J (2J + 1)1/2{A(K , K ′) + B(K , K ′)}. (A.2)

We will not review properties of A(K , K ′) and B(K , K ′) but refer the reader to [7, 8] for this
information. Tables of A(K , K ′) and B(K , K ′) for various ions are found in [8].

Let us, however, express the spin and orbital contributions to the reduced matrix element
in terms of a standard reduced matrix element in atomic physics W (ab)K ′

used also in the
interpretation of resonant x-ray diffraction. In W (ab)K ′

the integer a is the rank of its spin
contribution, and b is the rank of its orbital contribution. Tables of W (ab)K ′

, and W (ab) used
in (A.8), are found in [10].

Writing

(SL J‖T K ′
(K )‖S′ L ′ J ′) = Z K ′

spin(K ) + Z K ′
orb(K ), (A.3)

we find

Z K ′
orb(K ′ − 1) = (−1)K ′

iK ′+1δS,S′ {〈 jK ′−1(k)〉 + 〈 jK ′+1(k)〉}
× [ 2

3 (K ′ + 1)]1/2(2l + 1)2 A(K ′, K ′, l)W (0K ′)K ′
, (A.4)

where K ′ is an odd integer, l is the angular momentum of the valence shell (l = 2 and
3, respectively, for 3d and lanthanide ions) and A(K ′, K ′, l) is given in [7, 8]. Z K ′

orb(K ′ ± 1)



10292 E Balcar and S W Lovesey

satisfies (2.7) and Z K ′
orb(K ′) is zero. The spin contribution in (A.3) is slightly more complicated.

Let us use

D(K , K ′) = (−1)l〈 jK (k)〉(2l + 1)

(
l K l
0 0 0

)
[ 3

2 (2K + 1)]1/2W (1K )K ′
. (A.5)

If K ′ is even, the only non-zero value of B(K , K ′) occurs when K = K ′, in which case

Z K ′
spin(K ′) = iK ′

[ 1
3 (2K ′ + 1)]1/2 D(K ′, K ′). (A.6)

If K ′ is odd, then K = K ′ ± 1 and Z K ′
spin(K ′ ± 1) satisfies (2.7). For K = K ′ − 1,

Z K ′
spin(K ′ − 1) = iK ′−1[3(2K ′ + 1)]−1/2{(K ′ + 1)D(K ′ − 1, K ′)

− [K ′(K ′ + 1)]1/2 D(K ′ + 1, K ′)}. (A.7)

The form of the Wigner–Eckart theorem quoted in (A.1) is appropriate when working with
states labelled by the total angular momentum J . In describing properties of a 3d transition
ion it is quite common to have states labelled by spin and orbital quantum numbers, SMS L ML ,
with

|SMS L ML 〉 =
∑
J M

(SMS L ML |J M)|J M〉.

By constructing a matrix element 〈SMS L ML |T K ′
q ′ |SM ′

S L M ′
L 〉 and performing sums on J M

and J ′M ′, one finds that the appropriate form of the Wigner–Eckart theorem is obtained by
replacing the quantity

(−1)J−M

(
J K ′ J ′

−M q ′ M ′

)
W (ab)K ′

by the expression

(−1)a+b+q ′
{

2K ′ + 1

(2a + 1)(2b + 1)

}1/2

W (ab)
∑
mn

(
a K ′ b

−m q ′ −n

)

× (−1)S−MS

(
S a S′

−MS m M ′
S

)
(−1)L−ML

(
L b L ′

−ML n M ′
L

)
. (A.8)

The reduced matrix elements W (ab) and W (ab)K ′
are related by a 9 j symbol, and the general

expression is

W (ab)K ′ =
{

(2J + 1)(2K ′ + 1)(2J ′ + 1)

(2a + 1)(2b + 1)

}1/2
{ S S′ a

L L ′ b
J J ′ K ′

}
W (ab). (A.9)

Properties of W (ab) that are relevant to the interpretation of neutron diffraction are discussed
in [16].

The contribution to Thomson scattering made by valence electrons is〈∑
j

exp(ik · R j)

〉
= (4π)1/2

∑
K q

〈 jK 〉Y K
q (k̂)∗〈T K

q 〉c. (A.10)

Scattering by valence electrons will describe charge intensity seen at space-group-forbidden
reflections, for which the unit-cell structure factor (2.3) satisfies �K

q=0 = 0. In this instance, the
Thomson structure factor is obtained from (A.10) by substituting �K

q for 〈T K
q 〉c. The reduced

matrix element of the charge atomic tensor is

(SL J‖T K ‖S′ L ′ J ′)c = iK
√

8π(l‖Y K ‖l)W (0K )K . (A.11)

The reduced matrix element of a spherical harmonic in (A.11) limits K to even integers and a
maximum K = 2l (at space-group-forbidden reflections, the minimum K = 2).
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